

Hedging Effectiveness of Options on Thailand Futures Exchange

Jirapat Amornsiripanuwat Faculty of Commerce and Accountancy, Thammasat University Email : meng.jirapat@gmail.com

The author thanks Mr. Chirasakdi and Mrs. Saijai Poonpol for their generous research grant also thanks Professor Anya khanthavit, Mr. Nopadon Nimmanpipak, Dr. Pokpong Chirayukool, Mr. Woraphon Wattanatorn and Miss Watsachol Koosamart for comments and suggestions

Introduction

The Model : Black and Scholes (1973) Model

Wilmott (1994) Model

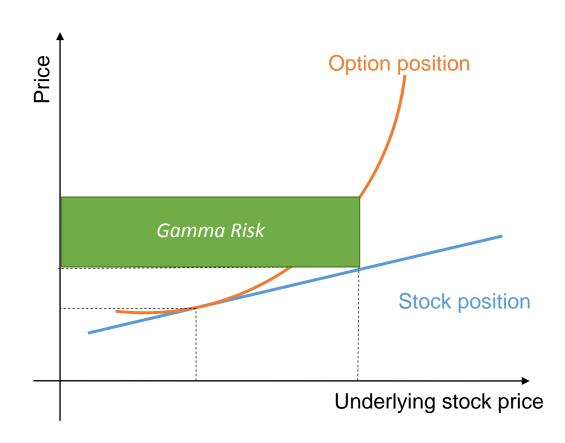
The Analysis of Hedging Error

The Data

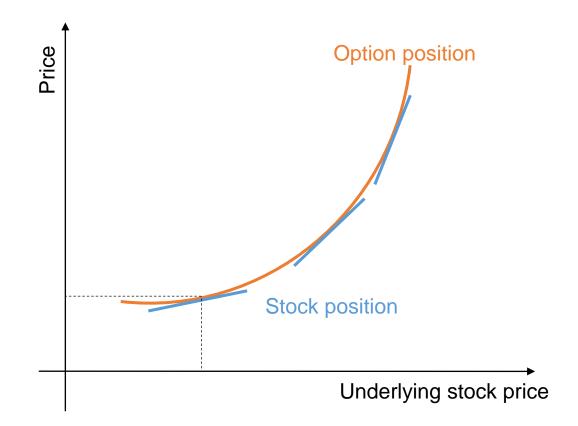
Empirical Result

Conclusion

Introduction



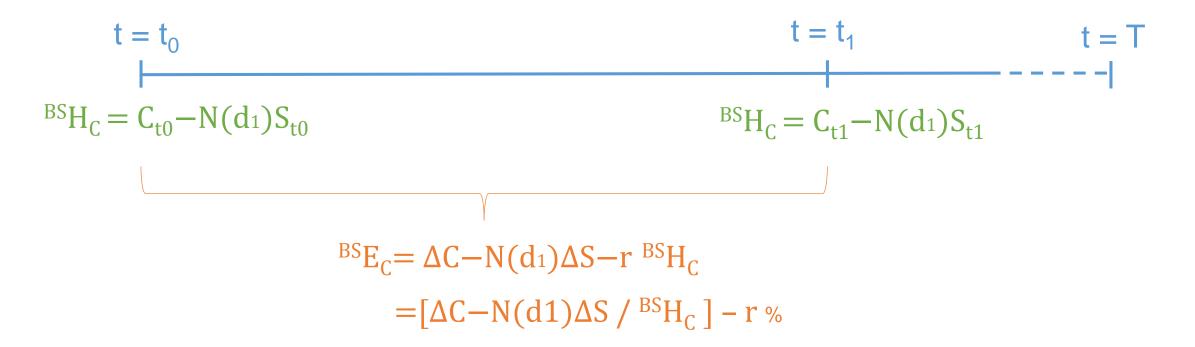
• A hedge is an investment position intended to offset potential losses/gains that may be incurred by a companion investment.


 In case of a European call option, a hedge portfolio is constructed by establishing a long position in the option and a short position in the underlying stock.

The relative position in the two securities in the hedge portfolio is determined by the first partial derivative of the option pricing formula with respect to the stock price.

• Given Black and Scholes (1973) assumptions, the continual adjustment of the hedge composition the value of the hedge at maturity becomes riskless.

 In practice there are some issues which have to concern. For example,



Transaction cost,

and Stock return distribution.

 Given Black-Scholes (1973) model, a hedging ratio is -N(d1) for call option and N(-d1) for put option.

• Given Black and Scholes (1973) assumptions, a hedging error have to equal 0.

• Given Wilmott (1994) model, a hedging ratio is $-[N(d1)+(\mu-r+0.5\sigma^2)S\Gamma]$ for call option and $+(N(-d1)-(\mu-r+0.5\sigma^2)S\Gamma)$ for put option.

$$t = t_{0}$$

$$H_{C} = C - (N(d1) + (\mu - r + 0.5\sigma^{2})S\Gamma)S$$

$$WME_{C} = [\Delta C - (N(d1) + (\mu - r + 0.5\sigma^{2})S\Gamma)]$$

$$MME_{C} = [\Delta C - (N(d1) + (\mu - r + 0.5\sigma^{2})S\Gamma)]$$

$$\Delta S / WMH_{C} - r\%$$

- The hedging ratio contains μ explicitly. There is no such thing as "perfect hedging" in the real world.
- According to Wilmott's suggestion, the volatility should be adjusted and the value of volatility adjustment is $\sigma^* = \sigma [1 + (0.5\sigma^2) (\mu r) (r \mu \sigma^2)]$.

 The analysis of the hedging error have considered the problem of reducing the deviations or spread of the hedging error. Usually the root mean squared error (RMSE) and the mean absolute error (MAE) were considered.

$$RMSE_{o}^{m} = \sqrt{\frac{1}{N} \sum_{t=1}^{N} \left(E_{o,t}^{m} (\%) \right)^{2}} \qquad \Longrightarrow \qquad \Delta RMSE_{o}^{m} = RMSE_{o}^{m=1} - RMSE_{o}^{m=2}}$$
$$MAE_{o}^{m} = \frac{1}{N} \sum_{t=1}^{N} \left| E_{o,t}^{m} (\%) \right| \qquad \Longrightarrow \qquad \Delta MAE_{o}^{m} = MAE_{o}^{m=1} - MAE_{o}^{m=2}$$

 In this study, I compare the hedging performance of the Wilmott model against the Black-Scholes model based on the daily data of SET50 index option from January 2014 to December 2014.

Parameters	Source of data
Option prices	
Exercise prices	SETSMART
Expiration dates	
Underlying SET50 index	Thomson Reuter DATASTREAM
Risk-free rate	ThaiBMA (1 Month Treasury Bills)

• I follow Vähämaa (2003) by classified option moneyness into three groups.

Moneyness	Call option	Put option
Out of the money	S/K < 0.97	K/S < 0.97
At the money	0.97 < S/K < 1.03	0.97 < K/S < 1.03
In the money	S/K > 1.03	K/S > 1.03

Table 1 reports number of observations which are classified into three categories.

	Moneyness	Observations
	OTM	220
	ATM	708
Call option	ITM	508
	Total	1,436
	OTM	484
	ATM	695
Put option	ITM	210
	Total	1,389
То	tal	2,825

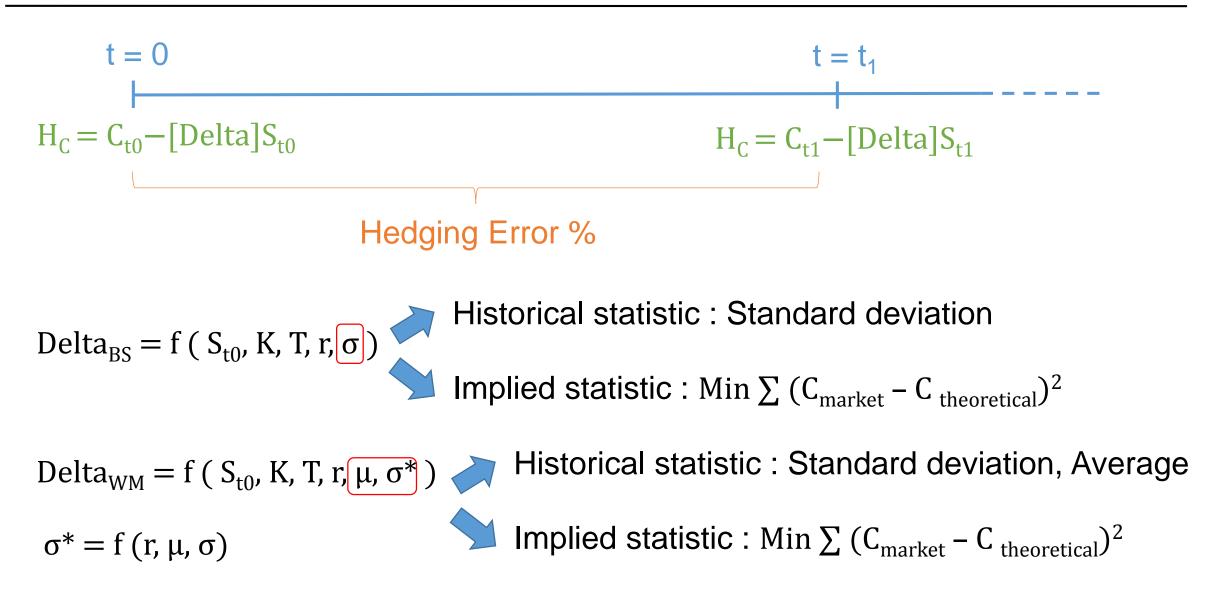


Table 2 reports model's parameters.

Descriptive	Ir	mplied statist	ic	Hi	SET50		
statistic	σ	σ*	μ	σ	σ*	μ	index Return
Average	0.8247%	0.8246%	0.0068%	0.0776%	0.0679%	-0.0010%	0.0510%
Median	0.7294%	0.7292%	0.0082%	0.0796%	0.0728%	0.0096%	0.0459%
Max	2.0209%	2.0209%	0.0260%	0.0935%	0.0875%	0.0728%	2.8190%
Min	0.4648%	0.4647%	-0.0178%	0.0552%	0.0314%	-0.0629%	-5.8396%
SD	0.2660%	0.2660%	0.0106%	0.0140%	0.0139%	0.0385%	0.9047%

Table 3 reports model performance comparison: Minimum 1 trading contract

		Root Mean Square Error % (RMSE)							Mean Absolute Error % (MAE)						
Option	Moneyness	Im	plied Stati	stic	Hist	orical Stat	tistic	Im	plied Stati	stic	Historical Statistic				
	-	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W		
	ОТМ	24.2700	22.7280	1.5421	3557.9316	68.7825	3489.1492	3.6429	3.5211	0.1218	243.8624	8.4104	235.4520		
	ATM	0.4723	0.4721	0.0002	0.4801	0.4794	0.0007	0.3449	0.3448	0.0001	0.3537	0.3535	0.0002		
Call	ITM	0.5499	0.5499	0.0000*	0.5989	0.5989	0.0000	0.4052	0.4051	0.0001*	0.4438	0.4438	0.0000		
	Total	9.5110	8.9082	0.6028	1392.6172	26.9267	1365.6904	0.8715	0.8528	0.0187	37.6919	1.6198	36.0721		
	ОТМ	14.5725	14.5766	-0.0042	6.0830	6.1146	-0.0317	3.8241	3.8255	-0.0014	1.3248	1.3330	-0.0083		
	ATM	0.6034	0.6036	-0.0001	0.5516	0.5522	-0.0005	0.4246	0.4248	-0.0002	0.4000	0.4005	-0.0006		
Put	ITM	0.6017	0.6019	-0.0002*	0.6645	0.6645	0.0000	0.4451	0.4452	-0.0001	0.4961	0.4959	0.0002		
	Total	8.6159	8.6183	-0.0025	3.6211	3.6397	-0.0186	1.6123	1.6129	-0.0006	0.7368	0.7399	-0.0031*		
-	Total	9.0819	8.7669	0.3150	992.8901	19.3667	973.5233	1.2357	1.2265	0.0092	19.5218	1.1872	18.3346		

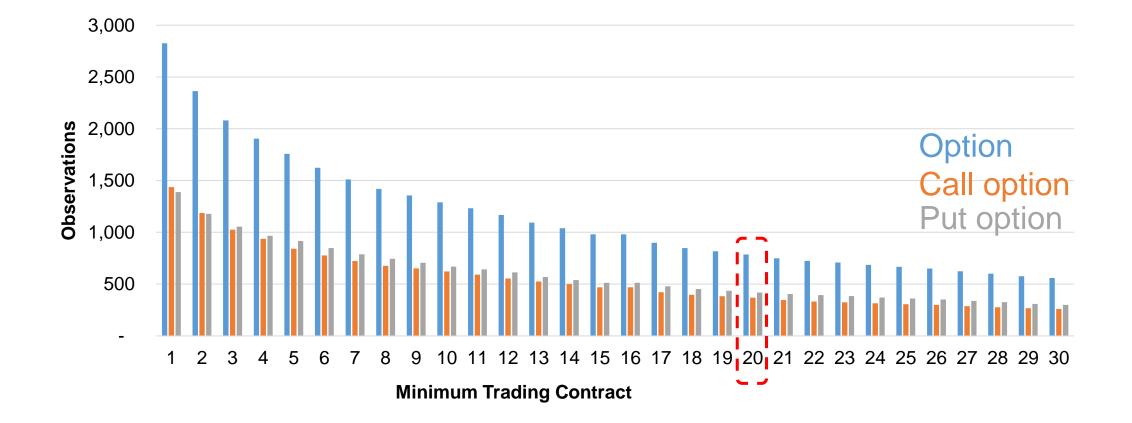


Table 4 reports model performance comparison. The out of the money is divided into 2 groups.

			Root M	ean Squar	e Error % (RMSE)		Mean Absolute Error % (MAE)						
Option	Moneyness	Im	plied Statis	stic	Historical Statistic			Implied Statistic			Historical Statistic			
	-	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W	
	DOTM	48.7796	45.6038	3.1758	7248.8736	139.8307	7109.0430	11.5145	11.0164	0.4981	1007.9105	30.8171	977.0934	
Call	ОТМ	4.5628	4.5247	0.0381	6.0455	5.2126	0.8330	1.1447	1.1424	0.0023	1.3801	1.2993	0.0808	
Dt	DOTM	20.0113	20.0194	-0.0081	8.7558	8.7548	0.0010	6.3966	6.3971	-0.0004	2.0097	2.0099	-0.0002	
Put	ОТМ	9.6916	9.6913	0.0004	3.4685	3.5596	-0.0912	2.2044	2.2064	-0.0020	0.8935	0.9069	-0.0133*	

Figure 1 reports number of observation given minimum trading contract.

Table 5 reports model performance comparison: Minimum 20 trading contracts.

Option			Root M	ean Squai	re Error % (RMSE)		Mean Absolute Error % (MAE)						
	Moneyness	Ioneyness Implied Statisti			Hist	orical Stat	tistic	Im	plied Stati	stic	Historical Statistic			
		BS	W	BS - W	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W	
	ОТМ	39.5887	39.9038	-0.3151	7866.8618	151.1152	7715.7466	7.7692	7.8188	-0.0496	1184.3305	33.5743	1150.7562	
	ATM	0.3944	0.3909	0.0035	0.4212	0.4193	0.0019	0.2844	0.2849	-0.0004	0.2993	0.2988	0.0005	
Call	ITM	0.4855	0.4850	0.0005	0.5123	0.5120	0.0003	0.3969	0.3967	0.0002	0.3959	0.3955	0.0003	
	Total	13.8489	13.9590	-0.1101	2750.9575	52.8449	2698.1126	1.2086	1.2150	-0.0064	145.0933	4.3754	140.7179	
	ОТМ	2.1938	2.1866	0.0072	3.6152	3.7174	-0.1021	1.0548	1.0533	0.0015	1.1572	1.1814	-0.0242	
	ATM	0.5277	0.9922	-0.4645	0.4767	0.4813	-0.0046*	0.3635	0.4123	-0.0488	0.3364	0.3389	-0.0025*	
Put	ITM	0.5953	0.5953	0.0000	0.6354	0.6369	-0.0015	0.4771	0.4773	-0.0002	0.5036	0.5044	-0.0008	
	Total	1.0631	1.2830	-0.2199	1.6238	1.6673	-0.0435	0.5009	0.5367	-0.0358	0.5020	0.5084	-0.0064*	
	Total	9.5077	9.5971	-0.0894	1882.3336	36.1794	1846.1542	0.8322	0.8543	-0.0220	68.1987	2.3189	65.8798	

Table 6 reports model performance comparison. The out of the money is divided into 2 groups.

		Root Mean Square Error % (RMSE)							Mean Absolute Error % (MAE)						
Option	Moneyness	Im	plied Statis	stic	Historical Statistic			Implied Statistic			Historical Statistic				
	-	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W	BS	W	BS - W		
Call	DOTM	76.6306	77.2410	-0.6104	15234.1081	292.3666	14941.7415	26.4542	26.6401	-0.1859	4435.1864	119.5833	4315.6031		
	ОТМ	1.3484	1.3488	-0.0004	6.9413	7.5343	-0.5930	0.9746	0.9747	0.0000	2.2011	2.2983	-0.0972		
	DOTM	3.4148	3.4103	0.0045	7.4317	7.5786	-0.1468	1.5253	1.5246	0.0007	2.4068	2.4483	-0.0416		
Put	ОТМ	1.8888	1.8804	0.0084	2.3247	2.4266	-0.1019	0.9692	0.9676	0.0016	0.9300	0.9511	-0.0211		

- Although the Wilmott model is more consistent with hedging procedures of Thai investors, its resulting performance is not better significantly—either statistically or financially, than that of the Black and Scholes model.
- Due to simplicity and familiarity of the model to the investors, the study recommends those investors, who use the Black-and-Scholes model at present, to continue using the model for hedging.

Question and Answer

